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Abstract

Squeezed states are a very useful framework for the quantum treatment of tensor pertur-

bations (i.e. gravitons production) in the early universe. In p_rticui&r, the non equilibrium

entropy growth in a cosmological process of pair production is completely determined by the

associated squeezing parameter and is insensitive to the number of particles in the initial

state. The total produced entropy may represent a significant fraction of the entropy stored

today in the cosmic blackbody radiation, provided pair production originates from L change

in the background metric at a curvature scale of the Planck order. Within the formalism

of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons

from an initial thermal bath,under the action of the cosmic gravitational background field.

We find that at low energy the graviton production is enhanced, if compared with spon-
taneous creation from the vacuum; as _ consequence, the inflation scale must be lowered,

in order not to exceed the observed CMB quadrupole anisotropy. This effect is important,

in particular, for models based on & symmetry-breaking transition which require, as initial

condition, z state of thermal equilibrium at temperatures higher than the inflation scale and
in which inflation has a minimal duration.

1 Introduction

In order to discuss the graviton production induced by a cosmological background transition, the

starting point is the linearized wave equation for a tensor perturbation. For the sake of generality

we will take into account also the variation of Newton constant [1], which corresponds, in a string

cosmological scenario [2], to a time-dependence of the Fradkin-Tseytlin dilaton field _t). The

linearized wave equstion is then, in the Brans-Dicke (Stringy) frame [1]

where h_ is the graviton field describing a tensor perturbation on a given curved background,

represented by a homogeneous diagonal metric in which d dimensions expand with the scale

factor a(t) and n dimension contract with the scale factor b(t):

g,.,= d og (2)
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(conventions: #, v = 1, ..., D = d + n + 1; i,j-1,...,d; a, bffil,...,n; t is the cosmic time coordinate,

ad 7i_, 7.b are the metric tensors of two maximally symmetric euclidean manifolds, parametrized

respectively by "internal" and "external" coordinates x i and y*).

In terms of the conformal time coordinate r/, defined by dt/drl -- a, equation (1) becomes [1]

,i"+ (¢ - v(,7)) - o (3)

where _ = h_ia_b_te-tt and V is

v(,7)= (d- t)a"
2 a + _T + (d- t)(d- 3) + ¼,,(,,- 2) (_)' +

?
1 .,2 a'b' 1 (d - 1)a_ ' - n b' ,,+ _ + .(d- 1)_ _ _ -_ (4)

This effective potential takes into account the contribution of the expanding dimensions (a' # 0),

of the contacting dimensions (b' # 0) and of the possible variation in time of the gravitational

coupling constant(_b' # 0). In the case of four expanding dimensions (without dilaton field and

without contracting dimensions) we recover the standard result, a minimally coupled scalar field

equation.

The quantum description of the amplification of scalar or tensor fluctuations, as discussed here

(for other references see e.g. [11]), is based on the separation of the field into background

solution and first order perturbations, and on the expansion of the solution to the perturbed wave

equation into ] in) and ] out) modes. The complex coefficients of this expansion are interpreted in

second quantization formalism as annihilation and creation operators for a particle (b, bt) and the

corresponding antiparticle (b, _t). The relation between ] in) and ] out) mode solution can thus be

expressed for each mode k as a Bogoliubov transformation between the I in) operators (b, bt, b, _t)

and the out ones (a, a t, fit, fi) [3]

ah= c+(_)b_+ c'(k)Et__ , at_h= c_(k)b_+ c;(k)_,t__ (5)

where Ic+l 2 - Ic_] 2 - 1. As noted by Grishchuk and Sidorov [3], by parametrizing the Bogoliubov

coefficients c_ in terms of the two real numbers r _> 0 and O,

c+(k)=cosh,(k) , c'(k) =d_'sinh,(k) (e)

the relatiomt (I) can be re-written as unitary transformations generated by the (momentum-

conserving) two-mode squeezing operator E_,

zb = exp(_lb_L_- ,hbi_t__) , *_= ,(k)*"°" (r)

(r is the so-called squeezing parameter) as

ah = Ehb_Eth (s)

(and related expressions for fit, _, fi)
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The mean number of produced gravitons is then, according to equation (8)

_, = (o1_1o) = I_-(k)l2=sinh2r,

From equation (5) is possible to compute the spectral energy density

(9)

p("2)= "2(__) _ "24_("2), (10)

"2 is the proper frequency related to the comoving one k by "2 = k/a(t) where a(t) is the scale of

the expanding background metric.

We then insert the known expression of c_("2) in eq.(9) and measure p(w), as usual, in units

of critical energy density pc, defining f/(w) = p(_)/pc. We have, in four dimensions (D - 4)

expanding with scale factor a07 ) '_ _7-a in conformal time [4]

, _2 < "2 < oJl (II)n(_, t0) -_aHL2_(t0)(_)2-2°

, _ < ._< _. (12)

present today in the form of radiation;

the power-law behaviour of the scale

n(_,to) 2 .2 2-2o _ -2CHt f_(to)(_)(_)

_(tO) _ lO -4 isthe fractionof the criticalenergy density

a > i isa coefficientparametrizing (in conformal time)

factor; 1"11-- H(tl) is the curvature scale at the time tl marking the end of inflation and the

beginning of the radiation-dominated era; w0 -_ I0 -is Hz is the minimum amplified frequency

crossing today the Hubble radius Hot; w.j __ 102wo is the frequency corresponding to the matter

radiation transition; _l, finally, is the maximum amplified frequency, related to the inflation scale

by wt = lOtl(Hl/MP) I/2 l'Iz (Mp is the Planck mass).

The computed spectra are constrained by the CMB anisotropy, by the pulsar timing data and

by the closure density. The bounds on the variation of the spectral energy density becomes bounds

on the variation of the squeezing parameter, which is given by [I],[3]

(13)"2 t In(M_)]r(_) = 16112s-I.(_-_) +

(]61 is a model-dependent number of order of unity).

2 Thermal modification of the graviton spectrum

In this picture the crucial assumption is that the initial state of the gravitons is precisely the

vacuum. The vacuum, however, is not the most general initial state for a gravity wave or for a

generic scalar perturbation[5]. We can mimic a generic initial state with a squeezed number state,

or, better with a statistical mixture of two mode squeeamd number states [6]. In particular, any

inflationary model baaed on & temperatttre dependent phase transition require as initial condition

a homogeneous thermal state. So, a particularly relevant case is that of a thermal mixture of

number states. Such initial condition will modify the mean number of particles and the spectral

energy density.
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For the spectral energy density we obtain [6]

f_(_,to) "" GHt2fLr(to)(_--")2-2acoth(_-'_ -) , _ < _ < _1 (14)

ft(w,to)_-GHt'N,(to)( W---)'-'°(w---)-'coth(_--_-) , _,_<w<_. (15)

Here/3o-' --/3-1(to) is the proper temperature of the initial thermal state, adiabatically rescaled

down to the present observation time to [/_h is defined in terms of the comoving temperature _ as

_(to) = _a(t0)]. The effect of the initial finite temperature is to enhance graviton production at

low frequency with respect to the high frequency sector of the spectrum. This effect depends on

the value of the initial temperature which, in the context of inflationary models based on thermal

symmetry breaking, is greater than the inflation scale. However, the modification of the spectrum

is relevant only if the inflationary period is not too long (see [6] for a detailed discussion).

3 Entropy production from the cosmological amplification
of vacuum fluctuations

Unlike the particle spectrum, which depends on the initial state, the non equilibrium entropy

growth, associated with the process of particle production [7], is not affected by the particular
choice of the initial conditions.

It is possible indeed to introduce a coarse graining approach to non equilibrium entropy, valid

for squeezed states, in which the loss of information associated to the reduced density matrix

is represented by the increased dispersion in the superfluctuant operators z, :} whose variance is

amplified with respect to their initial value [8], [9]. In terms of these operators a and _ have the

following differential representation [10]

al, -'i_'[(coehrj, siahrk)(z ifc)+(coshrj,+sinhrk)(O_ lot)] (16)
-2 ¢ - _

_-k = '- _' [(coshr_ sinhr_)(x + i_) + (coshrk + sinhrk)(0: + ion)] (17)
2e

(the relative phase haa been chosen with respect to Oj,, in such a way to identify the z and i

operators with the superfluctuant ones) and the squeezed number waver, actions (in the basis of

the superfluctmmt operators)becomes

0 ((Tk(Z2-_2)) Xn! E_ 10 >= L_

× ) = e,,q._,..) t rn!(.L rn)! (18)

where L,, and H, are the Laguerre and the Hermite polynomials, respectively and _ --- e -a''. It

should be noted that, because of pair corrrelations, this wavefanction cannot be simply factorized
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in terms of two decoupled squeezed oscillators in an excited state, which are known to provide

the usual representation for the one mode squeezed number wavefunction.

It is interesting to point out, in passing, that the wave functions of a two mode squeezed state,

as well as the transition probability between s generic two mode number state and a two mode

squeezed number state, in the superfluctuant variables representation (z , _) are the same as the

corresponding quantities obtained in the context of the "squee'z_" Landau levels problem for the

electron in a uniform magnetic field [12]. In the Landau levels problem the two quantum numbers

labelling the one particle wave functions are the energy of the electron and the component of the

angular momentum perpendicular to the plane of the classical motion of the electron. Here the

two quantum numbers in the many particle wavefunction are respectively the number of gravitons

with four-momentum k (nk) and with four-momentum -k (n-I,). Also to be mentioned is the fact

that it is possible, within this formalism, to consider more general wavefunctions with nh ¢ n_t

This is physically equivalent to consider, as initial condition for the gravitons, a state with

non-zero number of particles and non zero four-momentum.

The entropy growth for a generic squeezed mixture of number states is the same as for the

squeezed vacuum [10],

= -Tr(p., Inp°,) + [Tr(p., Inp. )],.ffio = (19)

where p,s, is the reduced density matrix for the mode k, and the integrated entropy over all the

graviton spectrum is [8], [9] (from eq. (19), (13)):

S, = 1618,(M )3/2 (20)

where S., _ [a(t)IT_(t)] s = const is the usual black-body entropy of the CMB radiation (in terms

of the to-day parameters, (ao/T_o) 3 -., (T_/Ho) 3 ... (10zs)s).

Particle production from the vacuum is thus a process able to explain the observed cosmological

level of entropy provided the curvature scale at the inflation radiation transition is of the order of

the Planck one [9], [10].
In the standard de Sitter inflationary scenario the curvature scale is bounded from the CMB

anisotropy observations and has to be//I _< 10-s Mp£. This observation would seem to rule out

the mechanism discussed here as a possible explanation of the entropy of the universe. On the

other hand such constraints are evaded if the de Sitter phase (or the radiation dominated phase)

is preceeded by a phase of growing curvature, llke in the "pre-big-bang" models [2] which arise

naturally in duality-symmetric string cosmology, and in which the curvature scale can approach

elan  <
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